Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Chinese journal of integrative medicine ; (12): 394-404, 2023.
Article in English | WPRIM | ID: wpr-982292

ABSTRACT

OBJECTIVE@#To examine the anti-inflammatory effect of grape seed extract (GSE) in animal and cellular models and explore its mechanism of action.@*METHODS@#This study determined the inhibitory effect of GSE on macrophage inflammation and Th1 and Th17 polarization in vitro. Based on the in vitro results, the effects and mechanisms of GSE on multiple sclerosis (MS)-experimental autoimmune encephalomyelitis (EAE) mice model were further explored. The C57BL/6 mice were intragastrically administered with 50 mg/kg of GSE once a day from the 3rd day to the 27th day after immunization. The activation of microglia, the polarization of Th1 and Th17 and the inflammatory factors such as tumor necrosis factor- α (TNF- α), interleukin-1 β (IL-1 β), IL-6, IL-12, IL-17 and interferon-γ (IFN-γ) secreted by them were detected in vitro and in vivo by flow cytometry, enzyme linked immunosorbent assay (ELISA), immunofluorescence staining and Western blot, respectively.@*RESULTS@#GSE reduced the secretion of TNF-α, IL-1 β and IL-6 in bone marrow-derived macrophages stimulated by lipopolysaccharide (P<0.01), inhibited the secretion of TNF-α, IL-1 β, IL-6, IL-12, IL-17 and IFN-γ in spleen cells of EAE mice immunized for 9 days (P<0.05 or P<0.01), and reduced the differentiation of Th1 and Th17 mediated by CD3 and CD28 factors (P<0.01). GSE significantly improved the clinical symptoms of EAE mice, and inhibited spinal cord demyelination and inflammatory cell infiltration. Peripherally, GSE downregulated the expression of toll-like-receptor 4 (TLR4) and Rho-associated kinase (ROCKII, P<0.05 or P<0.01), and inhibited the secretion of inflammatory factors (P<0.01 or P<0.05). In the central nervous system, GSE inhibited the infiltration of CD45+CD11b+ and CD45+CD4+ cells, and weakened the differentiation of Th1 and Th17 (P<0.05). Moreover, it reduced the secretion of inflammatory factors (P<0.01), and prevented the activation of microglia (P<0.05).@*CONCLUSION@#GSE had a beneficial effect on the pathogenesis and progression of EAE by inhibiting inflammatory response as a potential drug and strategy for the treatment of MS.


Subject(s)
Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Grape Seed Extract/therapeutic use , Interleukin-17 , Interleukin-1beta , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Th1 Cells , Mice, Inbred C57BL , Interferon-gamma/therapeutic use , Th17 Cells/metabolism , Interleukin-12/therapeutic use , Cytokines/metabolism
2.
Rev. méd. Chile ; 143(1): 120-123, ene. 2015. ilus
Article in Spanish | LILACS | ID: lil-742561

ABSTRACT

We report a 37 years old male with a dermatomyositis treated with oral cyclophosphamide. He was admitted to the hospital due to a zone of skin necrosis with purulent exudate, located in the second left toe. A complete blood count showed a leukocyte count of 2,600 cells/mm³. A Chest CAT scan showed a pneumomediastinum with emphysema of adjacent soft tissue. Cyclophosphamide was discontinued and leukocyte count improved. The affected toe was amputated and a chest CAT scan showed a partial resolution of the pneumomediastinum. We discuss and review the pathogenesis, clinical presentation and management of pneumomediastinum and cutaneous necrosis in association with dermatomyositis.


Subject(s)
Animals , Female , Rats , Benzoxazines/therapeutic use , Cannabinoids/agonists , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Morpholines/therapeutic use , Naphthalenes/therapeutic use , Neurons/drug effects , Oligodendroglia/drug effects , Amyloid beta-Protein Precursor/metabolism , Analysis of Variance , /metabolism , Caspase 9/metabolism , Cell Count/methods , Central Nervous System/pathology , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/complications , Macrophages/drug effects , Nerve Degeneration/etiology , Nerve Degeneration/prevention & control , Neurologic Examination , Poly(ADP-ribose) Polymerases/metabolism , Spinal Cord/drug effects , Spinal Cord/pathology , T-Lymphocytes/drug effects , Time Factors
3.
Rev. interdisciplin. estud. exp. anim. hum. (impr.) ; 6(único): 29-37, dezembro 2014. ilus, tab
Article in Portuguese | LILACS | ID: biblio-964725

ABSTRACT

A encefalomielite autoimune experimental (EAE) é uma doença inflamatória e desmielinizante do sistema nervoso central (SNC) caracterizada por incapacidades temporárias ou permanentes. A patogênese envolve a reação auto-imune associada com a produção de citocinas pró inflamatórias, tais como o fator de necrose tumoral alfa (TNF-α). Esta citocina está associada com o aumento de radicais livres de oxigênio, como o óxido nítrico, liberados pelas células imunes ativadas. Além de aumentar a inflamação, tanto o fator de necrose tumoral, como o óxido nítrico causam lesão tecidual direta. Este estudo avaliou o efeito da talidomida na progressão clínica da doença, desenvolvimento da reação inflamatória e desmielinização. A expressão tecidual "in situ" do TNF-α e iNOS, uma enzima associada com a produção de óxido nítrico, foi investigada em amostras do SNC obtidos durante o desenvolvimento do modelo de EAE em ratos Lewis. Métodos: Ratos Lewis(n = 30) foram divididos em grupo de controle saudável (I), grupo experimental de encefalomielite autoimune (II) e o grupo tratado com talidomida (III). Os ratos foram monitorizados durante 15 dias para determinação da condição clínica, após este período, os animais foram eutanasiados e as amostras do sistema nervoso central foram obtidas para a realização de estudo histopatológico e imuno-histoquímico Resultados: Todos os animais do grupo II tiveram sintomas relacionados a EAE, enquanto apenas um do grupo tratado talidomida apresentaram alterações clínicas. O estudo histopatológico revelou que as amostras de SNC do grupo II apresentaram áreas de intenso infiltrado inflamatório mononuclear difuso e presença de áreas de desmielinização. No entanto, os animais tratados com talidomida apresentaram ocasionalmente um leve infiltrado inflamatório e bainhas de mielina bem organizadas. Além disso, a expressão de TNF-α e iNOS foram significativamente maiores no grupo II, quando comparado com o grupo tratado com a talidomida. Conclusões: Os resultados considerados em conjunto sustentam a hipótese de que a talidomida inibe a intensidade do processo inflamatório e desmielinização, assim como reduz a produção de mediadores inflamatórios modulando o desenvolvimento da encefalomielite auto-imune experimental em ratos Lewis.


Experimental autoimmune encephalomyelitis is a inflammatory and demyelinating disease of central nervous system (CNS) characterized by permanents or temporary disabilities. Its pathogenesis involves autoimmune reaction associated with the production of pro inflammatory cytokines such as tumor necrosis factor alpha (TNF-α). This cytokine is associated with increase of reactive oxygen free radicals, such as nitric oxide, released by activated immune cells. Besides enhancing inflammation, both tumor necrosis factor as nitric oxide cause pathologically direct destruction of proteins and enzyme oxidation. This study focuses on clinical disease progression, development of the inflammatory reaction and evaluation axonal myelination . The " in situ" tissue expression of the TNF-α and inducible nitric oxide synthase iNOS ,an enzyme associated with the production of nitric oxide , were also investigated in CNS samples obtained during the development of experimental autoimmune encephalomyelitis model in Lewis rats. Methods: Lewis rats were used to perform the classical model of EAE. The rats ( n=30) were divided into the healthy control group (I), experimental autoimmune encephalomyelitis group (II) and thalidomide treated group (III). The rats were monitored for 15 days for determination of clinical score , after this period , the animals were euthanized and samples were obtained from the central nervous system in which histopatological study and immunohistochemistry for SNC in situ detection of TNF-α and inducible nitric oxide synthase (iNOS) were performed. Results: All animals of group II had symptoms related to experimental encephalomyelitis , while only one of the thalidomide treated group showed clinical changes. The histopatological study revealead that SNC samples of group II presented areas of intense focal and diffuse mononuclear inflammation and the myelin sheaths were scarce and poorly stained. However, thalidomide treated rats presented occasionally a mild perivascular inflammatory infiltrate and myelin sheaths were organized and well evidenced. In addition, the expression of TNF-α and iNOS were significantly higher in the group II when compared with thalidomide treated group. Conclusions: The results taken together support the hypothesis that thalidomide inhibits the intensity of the inflammation and demyelination process and as well as reduces the production of inflammatory mediators influencing the development of experimental autoimmune encephalomyelitis in Lewis rats


Subject(s)
Animals , Rats , Thalidomide/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Demyelinating Diseases , Nitric Oxide Synthase/pharmacology , Encephalomyelitis, Autoimmune, Experimental/pathology , Rats, Inbred Lew
4.
Mem. Inst. Oswaldo Cruz ; 105(3): 263-268, May 2010. ilus, graf, tab
Article in English | LILACS | ID: lil-547296

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) is mediated by CD4+ Th1 cells that mainly secrete IFN-γ and TNF-α, important cytokines in the pathophysiology of the disease. Spontaneous remission is, in part, attributed to the down regulation of IFN-γ and TNF-α by TGF-β. In the current paper, we compared weight, histopathology and immunological parameters during the acute and recovery phases of EAE to establish the best biomarker for clinical remission. Female Lewis rats were immunised with myelin basic protein (MBP) emulsified with complete Freund's adjuvant. Animals were evaluated daily for clinical score and weight prior to euthanisation. All immunised animals developed the expected characteristics of EAE during the acute phase, including significant weight loss and high clinical scores. Disease remission was associated with a significant reduction in clinical scores, although immunised rats did not regain their initial weight values. Brain inflammatory infiltrates were higher during the acute phase. During the remission phase, anti-myelin antibody levels increased, whereas TNF-α and IFN-γ production by lymph node cells cultured with MBP or concanavalin A, respectively, decreased. The most significant difference observed between the acute and recovery phases was in the induction of TNF-α levels in MBP-stimulated cultures. Therefore, the in vitro production of this cytokine could be used as a biomarker for EAE remission.


Subject(s)
Animals , Female , Rats , Encephalomyelitis, Autoimmune, Experimental/immunology , Interferon-gamma/biosynthesis , Lymph Nodes/metabolism , Spleen/immunology , Tumor Necrosis Factor-alpha/biosynthesis , Acute Disease , Biomarkers/analysis , Encephalomyelitis, Autoimmune, Experimental/pathology , Lymph Nodes/cytology , Lymph Nodes/immunology , Myelin Basic Protein , Rats, Inbred Lew , Spleen/cytology , Time Factors , Weight Loss
5.
Mem. Inst. Oswaldo Cruz ; 102(8): 931-936, Dec. 2007. ilus, graf
Article in English | LILACS | ID: lil-471859

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease of the brain and spinal cord that is mediated by CD4+ T lymphocytes specific to myelin components. In this study we compared development of EAE in Lewis rats from two colonies, one kept in pathogen-free conditions (CEMIB colony) and the other (Botucatu colony) kept in a conventional animal facility. Female Lewis rats were immunized with 100 µl of an emulsion containing 50 µg of myelin, associated with incomplete Freund's adjuvant plus Mycobacterium butyricum. Animals were daily evaluated for clinical score and weight. CEMIB colony presented high EAE incidence with clinical scores that varied from three to four along with significant weight losses. A variable disease incidence was observed in the Botucatu colony with clinical scores not higher than one and no weight loss. Immunological and histopathological characteristics were also compared after 20 days of immunization. Significant amounts of IFN-gamma, TNF-alpha and IL-10 were induced by myelin in cultures from CEMIB animals but not from the Botucatu colony. Significantly higher levels of anti-myelin IgG1 were detected in the CEMIB colony. Clear histopathological differences were also found. Cervical spinal cord sections from CEMIB animals showed typical perivascular inflammatory foci whereas samples from the Botucatu colony showed a scanty inflammatory infiltration. Helminths were found in animals from Botucatu colony but not, as expected, in the CEMIB pathogen-free animals. As the animals maintained in a conventional animal facility developed a very discrete clinical, and histopathological EAE in comparison to the rats kept in pathogen-free conditions, we believe that environmental factors such as intestinal parasites could underlie this resistance to EAE development, supporting the applicability of the hygiene hypothesis to EAE.


Subject(s)
Animals , Female , Rats , Cytokines/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Germ-Free Life/immunology , Myelin Basic Protein , Encephalomyelitis, Autoimmune, Experimental/pathology , Rats, Inbred Lew , Time Factors
6.
Braz. j. med. biol. res ; 40(7): 1003-1010, July 2007. ilus, graf, tab
Article in English | LILACS | ID: lil-455994

ABSTRACT

Scutellaria baicalensis Georgi is one of the important medicinal herbs widely used for the treatment of various inflammatory diseases in Asia. Baicalin (BA) is a bioactive anti-inflammatory flavone found abundantly in Scutellaria baicalensis Georgi. To explore the therapeutic potential of BA, we examined the effects of systemic administration of the flavone (5 and 10 mg/kg, ip) on relapsing/remitting experimental autoimmune encephalomyelitis (EAE) induced by proteolipid protein 139-151 in SJL/J mice, an experimental model of multiple sclerosis. The mice treated with PBS or BA at day -1 and for 3 consecutive days were observed daily for clinical signs of disease up to 60 days after immunization. In the PBS-EAE group, neurological scores were: incidence (100 percent), mean day of onset (8.0 ± 0.73), peak clinical score (3.0 ± 0.4), and cumulative disease index (141.8 ± 19.4). In the BA-EAE group (5 or 10 mg kg-1 day-1, respectively), incidence (95 or 90 percent), mean day of onset (9.0 ± 0.80 or 9.2 ± 0.75; P = 0.000), peak clinical score (2.2 ± 0.3 or 2.0 ± 0.3; P = 0.000), and cumulative disease index (75.9 ± 10.1 or 62.9 ± 8.4; P = 0.000) decreased, accompanied by the histopathological findings (decrease of dense mononuclear infiltration surrounding vascellum) for the spinal cord. Additionally, the in vitro effects of BA (5, 10, and 25 µM) on mononuclear cells collected from popliteal and inguinal lymph nodes of day-10 EAE mice were evaluated using an MTT reduction assay for cell proliferation, and ELISA to measure IFN-g and IL-4 cytokines. Compared with the control group, BA caused an increase in IL-4 (EAE-DMSO: 3.56 ± 0.42 pg/mL vs EAE-BA (5, 10, and 25 µM): 6.03 ± 1.1, 7.83 ± 0.65, 10.54 ± 1.13 pg/mL, respectively; P < 0.001); but inhibited IFN-g (EAE-DMSO: 485.76 ± 25.13 pg/mL vs EAE-BA (5, 10, and 25 µM): 87.08 ± 9.24, 36.27 ± 5.44, 19.18 ± 2.93 pg/mL, respectively; P < 0.001) and the proliferation of mononuclear cells (EAE-DMSO:...


Subject(s)
Animals , Female , Mice , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Flavonoids/therapeutic use , Cell Proliferation/drug effects , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Interferon-gamma/drug effects , Interferon-gamma/immunology , /immunology , Severity of Illness Index , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
7.
Medicina (B.Aires) ; 66(5): 472-485, 2006. ilus
Article in Spanish | LILACS | ID: lil-451719

ABSTRACT

La esclerosis múltiple (EM) ha sido considerada clásicamente como una enfermedad desmielinzante. Si bien el compromiso neurodegenerativo fue previamente descripto, sólo recientemente ha sido enfatizado. Por estudiosos recientes se ha identificado la degeneración axonal como el mayor determinante de discapacidad neurológica irreversible en pacientes con EM. El daño axonal se inicia tempranamente y permanece silente durante años, la discapacidad neurológica se desarrolla cuando se alcanza cierto umbral de pérdida axonal y los mecanismos de compensación se agotan. Se han propuesto tres hipótesis para explicar el daño axonal: 1) El daño es causado por un proceso inflamatorio, 2) Existe una excesiva acumulación de Ca2+ intra-axonal, 3) Los axones desmienlinizados evolucionan a un proceso degenerativo producto de la falta de soporte trófico provisto por la mielina o células formadoras de mielina. Si bien la EM fue tradicionalmente considerada como una enfermedad de la sustancia blanca, el proceso de desmielinización tambiém ocurre en la corteza cerebral


The concept of multiple sclerosis (MS) as a demyelinating disease is deeply ingrained. Although the existence of a neurodegenerative component has always been apparent, it has only recently become emphasized. Thus, in recent years several studies have identified axonal degeneration as the major determinant of irreversible neurological disability in patients with MS. Axonal injury begins at disease onset and remains clinically silent for many years; irreversible neurological disability develops when a threshold of axonal loss is reached and CNS compensatory mechanisms are exhausted. The precise mechanisms of axonal loss are poorly understood, and three hypotheses have been proposed: 1) The damage is caused by an inflammatory process, 2) There is an excessive accumulation of intra-axonal Ca2+, 3) Demyelinated axons undergo degeneration due to lack of trophic support by myelin, or myelin forming cells. Although MS has traditionally been regarded as a disease of white matter, demyelination can also occur in the cerebral cortex. Cortical lesions exhibit neuronal injury represented by dendritic and axonal transection as well as neuronal apoptosis. Because conventional nuclear magnetic resonance (NMR) is limited in its ability to provide specific information about axonal pathology in MS, new techniques such as, diffusion-weighted MRI, proton magnetic resonance spectroscopy, functional MRI, as well as novel techniques designed to measure atrophy have been developed to monitor MS evolution. Recognition that MS is in part a neurodegenerative disease should trigger critical rethinking on the pathogenic mechanisms of this disease and provides new targets for a rational treatment


Subject(s)
Humans , Axons/pathology , Multiple Sclerosis/pathology , Nerve Degeneration/pathology , Apoptosis/physiology , Axons/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Genes, MHC Class I/physiology , Magnetic Resonance Spectroscopy , Multiple Sclerosis/metabolism , Multiple Sclerosis/physiopathology , Nerve Degeneration/metabolism , Nerve Degeneration/physiopathology , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/parasitology , Retinal Ganglion Cells/pathology
8.
Braz. j. med. biol. res ; 32(5): 583-92, May 1999.
Article in English | LILACS | ID: lil-233476

ABSTRACT

Fibronectin (FN), a large family of plasma and extracellular matrix (ECM) glycoproteins, plays an important role in leukocyte migration. In normal central nervous system (CNS), a fine and delicate mesh of FN is virtually restricted to the basal membrane of cerebral blood vessels and to the glial limitans externa. Experimental autoimmune encephalomyelitis (EAE), an inflammatory CNS demyelinating disease, was induced in Lewis rats with a spinal cord homogenate. During the preclinical phase and the onset of the disease, marked immunolabelling was observed on the endothelial luminal surface and basal lamina of spinal cord and brainstem microvasculature. In the paralytic phase, a discrete labelling was evident in blood vessels of spinal cord and brainstem associated or not with an inflammatory infiltrate. Conversely, intense immunolabelling was present in cerebral and cerebellar blood vessels, which were still free from inflammatory cuffs. Shortly after clinical recovery minimal labelling was observed in a few blood vessels. Brainstem and spinal cord returned to normal, but numerous inflammatory foci and demyelination were still evident near the ventricle walls, in the cerebral cortex and in the cerebellum. Intense expression of FN in brain vessels ascending from the spinal cord towards the encephalon preceded the appearance of inflammatory cells but faded away after the establishment of the inflammatory cuff. These results indicate an important role for FN in the pathogenesis of CNS inflammatory demyelinating events occurring during EAE


Subject(s)
Rats , Animals , Female , Central Nervous System , Encephalomyelitis, Autoimmune, Experimental/immunology , Fibronectins/immunology , Antibodies, Monoclonal , Central Nervous System/chemistry , Central Nervous System/ultrastructure , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis/immunology , Encephalomyelitis/pathology , Fibronectins/chemistry , Immunohistochemistry , Rats, Inbred Lew
SELECTION OF CITATIONS
SEARCH DETAIL